**ISSN: 2320 – 7051** *Int. J. Pure App. Biosci.* **2 (1):** 147-155 (2014)

**Research** Article



# **International Journal of Pure & Applied Bioscience**

# Some Anti-diarrhoeic and Anti-dysenteric Ethno-medicinal Plants of Mao Naga Tribe Community of Mao, Senapati District, Manipur

Sunita Gurumayum<sup>1\*</sup> and Jiten Singh Soram<sup>2</sup>

<sup>1</sup>Dept. of Botany, Asufii Christian Institute, Mao, Senapati District, Manipur-795150 <sup>2</sup>Dept. of Zoology, Asufii Christian Institute, Mao, Senapati District, Manipur-795150 \*Corresponding Author E-mail: justienaone@gmail.com

## ABSTRACT

Diarrhoea and dysentery are the important causes of mortality in the developing countries till today. On the other hand, Manipur state as a whole lies in the Indo-Burma Biodiversity hot spot owing to which harbours diverged plants supporting about 50% of India's biodiversity. Mao Naga tribe inhabits the Mao area, located at a unique geographic, climatic and topographical area in Senapati district of Manipur. The people of Mao Naga tribe think themselves to have migrated from China through oral storytelling and have a distinct colourful culture and tradition in which traditional system of medicine forms a large part. However, this vast body of ethno-botanical knowledge has remained largely unexplored. Thus, an ethno-medicinal survey has been conducted with the help of local volunteers and accordingly this paper has a record of 45 plant species being used in traditional medicine belonghing 41 genera and 28 families for treating diarrhoea and dysentery. The family Asteraceae has maximum species representation of six followed by the family Zingiberaceae with five recorded species. Leaves were the maximum parts used compared to the other parts with their 34.3% usage, followed by fruit (15%) and bark (12%).The study also showed an immense potential for ethno-botanical research in the area.

Key words: Mao tribe, diarrhoea, dysentery, medicinal plant, treatment.

## INTRODUCTION

Diarrhoea comes from the Greek word diarrhoia. Dia means "flow" and rrhoia means "through" and the term "flowing through (diarrhoea)" was coined by Hippocrates. Thus, diarrhoea is a condition that involves the frequent passing of loose or watery stools. It usually affects the smaller bowel and the infection is confined to the upper epithelial layers of the intestinal lumen. There is no cell death in such condition and the infection is caused due to the release of toxins by the infecting pathogens. The disease is characterized by increased frequency of bowel movement, wet stool and abdominal pain. Children are more susceptible to the complications of diarrhoea because, a smaller amount of fluid loss leads to dehydration as compared to adults and is the second largest cause of death among children in developing countries. On the other hand, dysentery is bloody diarrhoea in which the loose or watery stools contain visible red blood cells and mucus. Dysentery is most often caused by Shigella species (bacillary dysentery) or Entamoeba histolytica (amoebic dysentery). When a person gets dysentery, the upper epithelial cells are attacked and destroyed leading to the ulceration of the colon. It is accompanied by fever at times and the patient usually complains of cramps and pain in the lower abdomen. Thus, either diarrhoea or bloody diarrhoea forms an important cause of mortality all over the world especially in the developing countries<sup>13</sup>. Globally, an estimated 1.8 billion diarrhoeal death among children occur every year<sup>35</sup>. According to the World Health Organization (WHO) approximately 3.5 million deaths each year are also attributable to diarrhoea and 80% of those deaths occur in children under the age of 5 years. Many public and private research institutions are trying to control this disease, but the rate of diarrhoeal death incidence is still high in developing countries<sup>21</sup>.

www.ijpab.com

Manipur is one of the small hilly states situated at the north eastern extreme corner of India that connects the Indian sub continent to East Asia as a unique passageway<sup>7</sup>. The state lies between 23.80°N and 25.68°N latitudes and 93.03°E and 94.78°E longitudes. It is bounded on the east by the Somra tract and the upper Chindwin areas of Myanmar, on the west by the Cachar hills of Assam, on the north by the Naga Hills of Nagaland, and on the south by the Chin Hills of Myanmar. The state has a total area of 22,327 sq. km. where in around 92% of the land is hilly area which surrounds the central bowl shaped valley formed by the deposits of alluvial soil valley area of about remaining 8 percent<sup>22</sup>. The State has a vast forest cover of 17,090 square km. which is 76.54% of the State's total geographical area of 22,327 square km. In terms of forest canopy density classes, the State has 730 sq.km areas under very dense forest, 6,151sq.km area under open forests. Numerous ethnic groups inhabit both the hill and valley area, thereby forming a diverged cultural and ethnic background<sup>28</sup> and Mao Naga tribe is one among them. Besides ethnic and cultural diversity, the region also lies in the Indo-Burma biodiversity hotspot, forming a unique bio-geographic province harbouring major biomes recognized in the world. It has the richest reservoir of diverged plant and supports about 50% of India's biodiversity<sup>20</sup>.

The Mao Naga tribe inhabits in over forty villages of the northern hills of Senapati District of Manipur state which lies between latitude 23.83<sup>o</sup>N to 25.68<sup>o</sup>N and longitude 93.03<sup>o</sup>E and 94.78<sup>o</sup>E. Modern Naga historians brought out the migration theory of the tribe through story telling that one of the Naga groups moved out during the reign of emperor of China, Qin Chin Haunghi, who built the Great Walls of China about 215 B.C. to keep out Mongols. There was mass exodus during this period as the emperor demanded forced labour, heavy taxation from his subjects and this led to discontentment among the population starvation, exhaustion and the political unrest. The oral tradition also says, Ikhro river is one of the tributaries feeding Barak river on which the forefathers en-route to Makhel Village and settled down there. Many of the Naga tribes trace their place of origin or point of their migration to this Makhel of Mao and its surrounding area<sup>4</sup>. They belong to the Mongolian stock and speak Tibeto-Burmese language, and have socio-cultural affinities with the Southeast Asia<sup>3</sup>. They have a very rich culture and traditional practices which is unique of its own. They are settled as agricultural community. In general the agricultural practices of the Mao tribe are considered to be the most advance form amongst the various Naga tribes in North-east India<sup>19</sup>. They are closely associated in various ways with their surrounding, landscape and resources mainly plants and animals for their day today requirements. They still follow their traditional beliefs including botanical folklore and adhere to the traditional ways. Thus, these ethnic people living in the remote areas used a variety of indigenous traditional medicinal plants as their folk medicine since time immemorial and various traditional indigenous medicinal plants play a vital role in making of traditional remedies of various diseases in the absence of medical facilities. It has also been reported of a long history of use of the ripen fruits of *Rhus javanica* (a small tree abundant grown in the hilly areas of Manipur, north-east India) as traditional medicine used among the traditional healers of Naga tribal community in Manipur, used to treat diarrhoea and dysentery as well as the other gastrointestinal disorders<sup>33</sup>.

There has been a massive technological advancement in the field of modern medicine, but many people in the developing countries still depend on medicinal plants for their daily health care requirements<sup>13</sup>. Even the world health organization (WHO) has started a diarrhoea disease control program to study traditional medicine practices and other related aspects, together with the evaluation of health education and prevention approaches<sup>34, 1</sup> and as such there are several works done on ethno-botany, medicinal plants and traditional techniques from the northeast region by various workers on different ethnic tribal communities. There are some worth mentioning reports of works done on ethno medicinal plants used by the different tribal communities from Northeast India viz. the north Cachar hills<sup>29</sup>; Tai-Khamyangs of Assam<sup>30</sup>; Sikkim<sup>31</sup>; Tinsukia, Assam<sup>5</sup>; Apatani, Arunachal Pradesh<sup>16</sup>; Angami-a, Nagaland<sup>23</sup> etc. There has also been several works done from the state of Manipur in the subject such as the report on the plants used by meitei community of Manipur for the treatment of diabetes by A. Premila Devi<sup>2</sup>; documentation of medicinal plant from among Zou tribes for the treatment of diarrhoea and dysentery by H. Esther

Int. J. Pure App. Biosci. 2 (1): 147-155 (2014)

Gangte et al<sup>12</sup>; traditional knowledge of kidney stones treatment by muslim maiba (herbalists) of Manipur, India by M. M. Ahmed and P. K. Singh<sup>24</sup>; herbal folk medicines used for urinary and calculi/stone cases complaints in Manipur reported by Lokendrajit N. et al<sup>18</sup>; a report on ethno-botany of Chothe tribe of Bishnupur District(Manipur) by S. Purbashree et al<sup>25</sup>etc. Prof. R.K. Mutatkar, President, IASTAM and Chairman, Dept. of Health Sciences, University of Pune also has pointed out that, people need to rediscover kinship with plants that give their food and medicine, re-establish Man-Nature relationship in curative medicine as plant medicine cure methods in the treatment of diseases have been claimed to have no side effects and they are cheaper than modern medicine. However, there are no reports on the detailed practice on the usage of folk medicinal plants by Mao Naga for a particular disease. Besides this, the medicinal plants and the practice of their usage is facing a serious threat owing to modernization, deforestation and lack of proper written records passed down from generation to generation. Thus, in the back drop of above facts, the present work is an attempt to assess, study and document the folk medicinal plants and their usage by the Mao Naga of Mao for curing of diarrhoea and dysentery which is one of the most common diseases in the region. It is also wished that, the extrapolation of this data might be of help to the future researchers in their pursuit of further in-depth study in the area.

## MATERIALS AND METHODS

Survey of anti-diarrhoeal and anti-dysenteric plants were done for a period of one year (January to December, 2009) with the help of local volunteers. Detail information regarding the medicinal plants, part of the plants used, how they are used etc. were extracted consulting local practitioners, elders and knowledgeable villagers. The data were collected in a comprehensive questionnaire format. As far as possible the validity of the information collected were again counter checked and confirmed by direct interaction with the patients who use these medicinal plants. Small herbs were collected as a whole whereas twigs were collected in case of climbers, shrubs and trees. The collected plant specimens were identified based on published literatures of Hooker<sup>11</sup>, Kanjilal et al<sup>15</sup>, Deb9<sup>10</sup>, Bor<sup>6</sup>, Sinha<sup>32</sup> and Joshi<sup>36</sup> and correct nomenclature were given to the specimens.

## **RESULT AND DISCUSSION**

In the present ethno-medicinal study on the use of traditional herbal medicine among the Mao tribe of Mao with special reference to the treatment of diarrhoea and dysentery, a total of 45 different medicinal plant species belonging to 41 genera and 28 different families have been recorded. The people of Mao tribe community of Manipur have been using these plants as an alternative to modern medicines for the treatment of diarrhoea and dysentery. Local elders and practitioners possess rich traditional knowledge based on locally available resources of plants for the management of many diseases or disorders including diarrhoea and dysentery. Through them it has also been learned that some of the plants viz. Ageratum convzoides, are exotic and have reached the area along with the fodder of Horse brought by the Indian Army in 1960s. Table-1 shows the scientific name, family, vernacular name, common English name of the plants, parts used and method of their preparation. The family Asteraceae has been found to have maximum species representation numbering six followed by the family Zingiberaceae with five recorded species. The Fabaceae family has been found to be represented by four species and five families viz. Acantheceae, Anarcadiaceae, Lamiaceae, Euphorbiacae and Rubiaceae were recorded to be represented by two/two species each. The remaining 20 families viz.Polygonaceae, Saurauraceae, Apiaceae, Rutaceae. Araliaceae, Ranunculaceae, Bengoniaceae, Solanaceae, Meliaceae, Delleniaceae. Xanthorrhoeaceae, Vervanaceae, Passifloraceae, Mussaceae, Myrtaceae, Malvaceae, Cyperaceae, Rosaceae, lythraceae and Poaceae have been recorded with only one/one species representation. As far as the plant parts used for the treatment is concerned, leaves were the maximum parts used comparing to the other parts with their 34.3% usage followed by fruit (15%) and bark (12%). The details are given in the table-2 and graph-1. Similar studies have also been taken up by many authors in different fields and areas. Such studies also validate the present work. Das et al<sup>8</sup> has documented a total of 8 species of medicinal

Int. J. Pure App. Biosci. 2 (1): 147-155 (2014)

plants used by the Zeme (Naga) tribes of North Cachar Hills which were found to be distributed across 8 families. Different parts of the plants were used by the Zemes as medicine. Tamarindus indicus has been reported for the treatment of snakebite by the Hmar tribe of Cachar district whereas the Zeme (Naga) tribe of the area uses the same in the treatment of diarrhoea. The use of Psidium guyava by the Hmars and Reangs<sup>8</sup> also validates the reported use of the same species by the people of Mao in the present study for the same diseases. Besides these, there are also the reports of some of the plants recorded in the present study being used in the treatment of the diseases viz. Adhatoda vesica, Alstonia scolaris, Punica granatum, Solanum nigrum<sup>27</sup>; Adhatoda vesica and Punica grantum in Dir Kohistan valley<sup>14</sup>; Musa paradisiacal, Punica grantum, by the people of Gond tribe<sup>26</sup>; Oroxylum indicum by Chothe tribe of Manipur<sup>25</sup>; Callicarpa arborea and Mikania micrantha in western Mizoram<sup>17</sup> etc. Thus, the present study has revealed that the Mao Naga tribes' knowledge about the medicinal use of plants is vast and genuine.

| S.No. | Scientific name                                  | Vernacular<br>name | English name                           | Family          | Parts used             | Usage pattern                                                                                                                                                                                             |
|-------|--------------------------------------------------|--------------------|----------------------------------------|-----------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.    | Polygonum<br>orientale Linn.                     | Obuvii             | Smartweeds.                            | Polygoncaeae    | Leaves                 | Fresh leaves are boiled with<br>or without rice and serve the<br>patient suffering from serious<br>diarrhoea and dysentery for<br>quick relief.                                                           |
| 2.    | Paederia foetida<br>Linn.                        | Oboripro           | Chinese Fever<br>Vine                  | Rubiaceae       | Leaves                 | Fresh leaf juice is mixed with<br>water and given to relief<br>gastritis/acidity.                                                                                                                         |
| 3.    | <i>Elsholtzia ciliata</i><br>Thunb.              | Nopiu              | Late-summer<br>mint                    | Lamiaceae       | Leaves                 | Fresh leaves extract is given<br>to treat gas formation and<br>quick relief from stomach<br>upset.                                                                                                        |
| 4.    | Rhus semialata<br>Linn.<br>or<br>Rhus chinenesis | Omoshii            | Chinese galls<br>or nutgall tree       | Anacardiaceae   | Fruits                 | Fresh leaf or dried ripen fruit<br>decoction is used for treating<br>dysentery and diarrhoea.                                                                                                             |
| 5.    | Gynura bicolor<br>DC.                            | Tabovii            | Okinawan<br>spinach                    | Asteraceae      | Leaves and young stems | Leaves along with the young<br>stems is boiled with or<br>without rice and is taken for<br>treating gastritis/ chronic<br>acidity                                                                         |
| 6.    | Zanthoxylum<br>armatum DC                        | Momo mochu         | Prickly-ash or<br>Hercules'<br>Club.   | Rutaceae        | Fruits                 | The whole fruit is crushed and<br>applied on the abdomen or<br>three to five seed's fleshy<br>covers are chewed and taken<br>for stomached, stomach<br>disorder and expulsion of gas<br>from the stomach. |
| 7.    | Eleutherococcus<br>cissifolius Griff.            | Kosa Motsii        | Eleuthero or<br>Siberian<br>ginseng.   | Araliaceae Juss | Leaves                 | Leaf decoction is used to treat stomach disorder.                                                                                                                                                         |
| 8.    | Thalictrum<br>foliosum D.C.                      | Okhruvii           | Naga guining                           | Ranunculaceae   | Whole plant            | The whole plant is boiled or<br>eaten raw for chronic acidity,<br>diarrhoea and dysentery,                                                                                                                |
| 9.    | Oroxylum<br>indicum Linn.                        | Kakidziihe         | Indian<br>trumpet<br>flower            | Bignonaceae     | Bark and<br>Root       | Decoction of the freshly<br>peelings of the bark and outer<br>covering of the root is taken<br>for Diarrhoea                                                                                              |
| 10.   | Justicia<br>adhatoda Linn.                       | Kojii kakra        | Malabar Nut.                           | Acanthaceae     | Leaves and<br>Roots    | Decoction of fresh leaves,<br>seeds and fruits is taken for<br>acidity, abdominal pain,<br>indigestion, appetizers                                                                                        |
| 11.   | Physalis<br>peruviana Linn.                      | Tsiibobopro        | Cape<br>gooseberry or<br>ground cherry | Solanaceae      | Leaves and<br>Fruit    | The leaves are taken raw or<br>boiled and the decoction is<br>taken for diarrhoea and<br>dysentery.                                                                                                       |

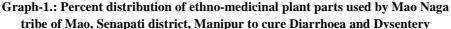
Table-1. Ethnomedicinal plants used by Mao Naga tribe of Mao, Senapati district, Manipurs

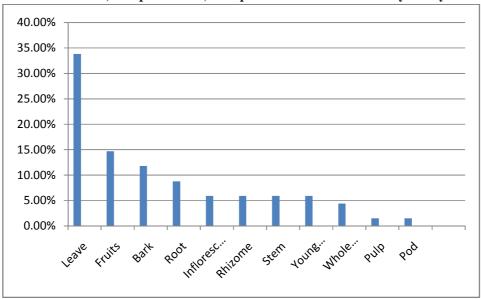
## Int. J. Pure App. Biosci. 2 (1): 147-155 (2014)

ISSN: 2320 - 7051

|     |                                                     |                        | 1                                       | 1                  |                                     |                                                                                                                                                                                      |
|-----|-----------------------------------------------------|------------------------|-----------------------------------------|--------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12. | Passiflora edulis<br>Lindl.                         | Kheboshii              | Passion fruit                           | Passifloraceae     | Fruit and<br>leaves                 | Fresh leaves decoction as well<br>as the leaves is taken raw for<br>treating dysentery, diarrhoea<br>and stomach upset.                                                              |
| 13. | <i>Musa paradisiaca</i><br>Linn.                    | Ovii                   | Bananas                                 | Musaceae           | Fruit                               | One to three ripe bananas is<br>taken at a time to subdue or<br>stop loose motion/ diarrhoea.<br>Roasted unripe banana is also<br>taken in serious condition of<br>the same ailment. |
| 14. | <i>Psidium guajava</i><br>Linn.                     | Pondoshi               | Common<br>guava                         | Myrtaceae          | Fruit and<br>young tender<br>Leaves | Leaf decoction is given for<br>treating diarrhoea and serious<br>dysentery. The young leaves<br>or fruits are also taken raw for<br>the same treatment.                              |
| 15. | <i>Glochidion</i><br><i>oblatum</i> J. D.<br>Hooker | Lokhro todu            | Twining shrub                           | Euphorbiaceae      | Stem and Root                       | Fresh stem and roots extracts are taken for dysentery.                                                                                                                               |
| 16. | Mentha arvensis<br>Linn.                            | Opfokosopro            | Mint                                    | Lamiaceae          | Young shoot<br>and Leaves           | Fresh shoot juice with a pinch<br>of common salt or a spoon of<br>honey is given to diarrhoea<br>patient.                                                                            |
| 17. | Chrysanthemum<br>morifolium<br>Desmond              | Shiipriipa             | Florist's Daisy                         | Asteraceae         | Leaves                              | Young leaves are chewed raw<br>to treat diarrhoea and<br>dysentery.                                                                                                                  |
| 18. | Amomum<br>dealbatum                                 |                        | Java cardamom                           | Zingiberaceae      | Soft stem,<br>buds and<br>rhizome   | Fresh soft stems are eaten raw<br>and can treat both diarrhoea<br>and dysentery.                                                                                                     |
| 19. | Meyna laxiflora                                     | Heibi(M)               | MAY-nuh                                 | Rubiaceae          | Dried fruits                        | Dry fruits are eaten to treat<br>dysentery.                                                                                                                                          |
| 20. | Hibiscus<br>sabdariffa                              | Okhriewo               | Red sorrel                              | Malvaceae          | Fresh leaves,<br>Dried fruits       | The juice extract of leaf with a<br>pinch of common salt is used<br>for the treatment of gastric<br>problem                                                                          |
| 21. | Cyperus rotundus                                    | Sembang<br>kaothoom(M) | Nut Grass                               | Cyperaceae         | Fresh rhizomes                      | Crushed rhizomes are given once in the early morning.                                                                                                                                |
| 22. | Phlogacanthus<br>thyrsiflorus                       | Kojii kohho            | Chuwa ful                               | Acantheceae        | Leaf and inflorescence              | Juice extract is used in dysentery.                                                                                                                                                  |
| 23. | Rubus ellipticus                                    | Berry                  | Yellow<br>Himalayan<br>raspberry        | Rosaceae           | Root bark                           | The root bark is used to treat diarrhoea and dysentery.                                                                                                                              |
| 24. | Ageratum<br>conyzoides                              | Orepro                 | Goat weed                               | Asteraceae         | Stem, Flower<br>& Leaf              | Leafy shoot decoction is used<br>in diarrhoea, dysentery &<br>other related ailments.                                                                                                |
| 25. | Houttuynia<br>cordata                               | Tonggo                 | Lizard tail                             | <u>Saururaceae</u> | Leaf and root                       | Used in folk medicine is<br>widely used to expel harmful<br>bacteria.                                                                                                                |
| 26. | <i>Tamarindus indica</i><br>Linn.                   | Mange or<br>Tarmarind  | Indian date                             | Fabaceae           | Pulp of unripe<br>fruit             | Unripe pulp decoction given<br>to dysentery patient.                                                                                                                                 |
| 27. | Aloe barbadensis<br>Mill.                           | Ghritakumar            | Indian aloe                             | Xanthorrhoeaceae   | Leaf                                | Leaf extract is mixed with sugar and given in dysentery.                                                                                                                             |
| 28. | Curcuma longa<br>Roxb.                              | Yai-ngang              | Turmeric                                | Zingiveraceae      | Rhizomes                            | Pulp with banana and milk given to treat dysentery.                                                                                                                                  |
| 29. | <i>Mikania</i><br><i>micrantha</i> Kunth.           | Umang-uri(M)           | Bitter Vine or<br>Climbing<br>Hemp Vine | Asteraceae         | Leaf                                | Juice extract of leaf given to diarrhoea and dysentery.                                                                                                                              |
| 30. | Punica granatum                                     | Kaphoi                 | Pomegranate                             | <u>Lythraceae</u>  | Leaf, peel                          | Either the extract or the fresh<br>leaf and young fruit or peel is<br>used to treat both diarrhoea<br>and dysentery.                                                                 |
| 31. | Cucurma<br>angustifolia                             | Kochapa                | East Indian<br>arrow root.              | Zingiberaceae      | Inflorescence                       | The inflorescence is made into many ways to treat dysentery.                                                                                                                         |
| 32. | Emblica<br>officinalis                              | Choroshi               | Indian<br>gooseberry.                   | Euphorbiaceae      | Bark                                | The pounded bark decoction<br>or fresh fruits crushed with<br><i>Adhatoda vasica</i> leaf are eaten<br>to treat both diarrhoea and<br>dysentery.                                     |

| Sunita | Gurumayum et al |
|--------|-----------------|
|        |                 |


## Int. J. Pure App. Biosci. 2 (1): 147-155 (2014)


ISSN: 2320 - 7051

|     |                          |            |                 |               |               | In traditional medicine the                                  |
|-----|--------------------------|------------|-----------------|---------------|---------------|--------------------------------------------------------------|
| 33. | Cynodon<br>dactylon      | Fiiprii    | Devil's grass   | Poaceae       | Whole plant   | whole plant is crushed and<br>the juice extract is used to   |
|     | -                        |            |                 |               |               | treat indigestion.                                           |
|     | Dolichos                 |            | Hyacinth bean   |               |               | The juice extract with a                                     |
| 34. | lablab Linn.             | Litotopha  | or Indian bean  | Fabaceae      | Leaf and      | pinch of salt given to treat                                 |
|     |                          |            |                 |               | pod           | both the ailments.                                           |
|     |                          |            | Nepalese        |               |               | Pounded bark decoction is                                    |
| 35. | Dillenia                 |            | Elephant        | Dilleniaceae  | Bark          | regularly given to treat                                     |
|     | pentagyna                |            | Apple.          |               |               | both diarrhoea and                                           |
|     |                          |            |                 |               |               | dysentery.                                                   |
|     | Cucurma                  |            |                 |               |               | Juice extract of the                                         |
| 36. | <i>caesia</i> Roxb.      | Yai-mu     | Black zedoary.  | Zingiberaceae | Rhizome       | rhizome is used for the                                      |
|     |                          |            |                 |               |               | treatment of dysentery.                                      |
| 25  |                          |            | <b>W</b> 1 1    | <i>—</i>      | DI            | Juice extract from                                           |
| 37. | Costus                   |            | Keukand         | Zingiberaceae | Rhizome,      | Rhizome, leaf and soft                                       |
|     | speciosus                |            |                 |               | leaf and soft | stem is used for treating                                    |
|     | Smith.                   |            |                 |               | stem          | both diarrhoea and                                           |
|     |                          |            | Asiatic         |               |               | dysentery.<br>The decoction of the plant                     |
| 38. | Centella                 | Koraio     | pennywort or    | Apiacae       | Whole plant   | with a pinch of salt is used                                 |
| 50. | asiatica                 | Koraio     | Indian          | Aplacae       | whole plant   | for treating diarrhoea,                                      |
|     | Linn.                    |            | pennywort       |               |               | dysentery and                                                |
|     |                          |            | pennywore       |               |               | constipation.                                                |
|     | Callicarpa               |            |                 |               | Tender        | Tender shoots are eaten                                      |
| 39. | arborea                  |            | Masgede (Nep)   | Vervanaceae   | shoot and     | raw and the decoction of                                     |
|     | Roxb.                    |            | 0 (1)           |               | bark          | the bark is used in                                          |
|     |                          |            |                 |               |               | diarrhoea.                                                   |
|     | Gynura                   |            | Lanceleaf       |               |               | Fresh or the decoction of                                    |
| 40. | angulosa                 | Kolatobo   | Blumea          | Asteraceae    | Leaf          | the leaf can relief                                          |
|     |                          |            |                 |               |               | diarrhoea and dysentery.                                     |
|     |                          |            |                 |               |               | Mixed with barks of                                          |
| 41. | Bengonia                 | Joukibarut | East Himalayan  | Bengoniaceae  | Tuberous      | <i>Parkia javanica</i> and                                   |
|     | roxburghii               | (Rongmei)  | Begonia         |               | root stocks   | Spondias pinnata                                             |
|     | A.Dc.                    |            |                 |               |               | decoction is used in                                         |
|     |                          |            | 0.111.          |               |               | chronic ddysentery.                                          |
| 10  | Bauhinia                 | T 1        | Orchid tree/    |               | D 1           | Decoction of the bark is                                     |
| 42. | variegate                | Levoh      | Mountain-       | Fabaceae      | Bark          | given till the recovery of                                   |
|     | Linn.                    |            | ebony<br>Common |               | Soft stem     | the diarrhoea.<br>Decoction of stem and leaf                 |
| 43. | Artemisia                | Shiiprei   | Wormwood        | Aseraceae     | and leaf      |                                                              |
| 45. | <i>vulgaris</i><br>Linn. | Shipter    | worniwoou       | Aseraceae     | and leaf      | about <sup>1</sup> / <sub>2</sub> cup is given 2-3<br>times. |
|     | L/IIII,                  |            |                 |               |               | The pod cover peel or the                                    |
| 44. | Parkia                   | Yongcha    | Tree bean       | Fabiaceae     | Pods and      | bark decoction is to treat                                   |
|     | javanica                 | 1 ongoin   | iice beun       | T ushicouc    | bark          | both diarrhoea and                                           |
|     | Jaranova                 |            |                 |               | Curk          | dysentery.                                                   |
|     | Spondias                 |            |                 |               | 1             | Juice extract from the                                       |
| 45. | pinnata                  | Heining(M) | Wild mango      | Anacardiaceae | Tender        | tender shoot is given fo                                     |
|     | Linn.                    | 61 /       |                 |               | shoot         | the treatment of Diarrhoea                                   |
|     |                          |            |                 |               |               | and dysentery ill recovery.                                  |

| Table-2. Percent distribution of ethno-medicinal plant parts used by Mao Naga |
|-------------------------------------------------------------------------------|
| tribe of Mao, Senapati district, Manipur to cure Diarrhoea and Dysentery      |

| S. No. | Plant part    | Used  |  |
|--------|---------------|-------|--|
| 1.     | Leave         | 33.8% |  |
| 2.     | Fruits        | 14.7% |  |
| 3.     | Bark          | 11.8% |  |
| 4.     | Root          | 8.8%  |  |
| 5.     | Inflorescence | 5.9%  |  |
| 6.     | Rhizome       | 5.9%  |  |
| 7.     | Stem          | 5.9%  |  |
| 8.     | Young shoot   | 5.9%  |  |
| 9.     | Whole plant   | 4.4%  |  |
| 10.    | Pulp          | 1.5%  |  |
| 11.    | Pod           | 1.5%  |  |





## CONCLUSION

The people of Mao Naga are settled as agricultural community and they heavily depend upon the cultivated and wild plants recourses for their survival since time immemorial. In spite of the influx of modern civilization and advancement in the field of medical science, the Mao Naga people are still holding on their traditional practices and the plant medicine cure methods in the treatment of diseases. Such traditional practices have been claimed to have no side effects and they are cheaper than modern medicine. Thus, it is felt that the use of these plants to treat various illnesses is still needed by the community, owing to their poor socio-economic conditions, high cost and difficulty to access the allopathic medicines. However, on the other hand, the medicinal plants and the practice of their usage is facing a serious threat owing to modernization, deforestation and lack of proper written records passed down from generation to generation. Thus, it is felt that, there is an urgent need and attention required to document and conserve such vital resources so as to optimize their use in the primary health care system so that a long term plan on the use of herbal drugs may be arrived at. Thorough scientific study is also required to tap and harvest the medicinal constituents of the rich medicinal plant recourses of the Mao area so as to enable catering the needs of vibrant healthcare products in future. It is therefore wished that a little effort and initiative taken up by the authors might encourage our belief in traditional practices to cure diseases.

### Acknowledgement

The authors would like to thank Sir Kapani Krelo, Assistant Professor, Department of Political Science, Asufii Christian Institute, Punanamei, Mao for his generous help and troubles taken in trying to identify and find out the local name of the collected plants. The authors would also like to thank the local practitioners, village elders, volunteers and whoever connected with the present work for their invaluable contributions during the study period. The authors are highly grateful for their valuable participation; without their support the present study would not have been possible to bring out successfully.

## REFERENCES

1. Akuodor GC, Muazzam I, Usman-Idris M, Megwas UA, Akpan JL, Chilaka KC, Okoroafor DO, Osunkwo UA. Evaluation of the Antidiarrhoeal Activity of Methanol Leaf Extract of *Bombax Buonopozense* in Rats. *Ibnosina J Med BS*, **3**(1): 15-20 (2011)

Sunita Gurumayum et al Int. J.

Int. J. Pure App. Biosci. 2 (1): 147-155 (2014)

- A. Premila Devi, Plants Used by Meitei Community of Manipur for the Treatment of Diabetes. Assam University Journal of Science & Technology: Biological and Environmental Sciences. 7 (1): 63-66(2011)
- 3. Ao Alemchiba, M., A brief historical account of Nagaland, Kohima: Naga Institute of Culture (1970)
- 4. Athikho Kaisii and Francis Ariina, Tribal Philosophy and Culture of Mao Naga of North east, *A Mittal Publication*, ISBN-81-8324-413-0; 1<sup>st</sup> Edn: 118 (2012)
- 5. Buragohain Jitu., Ethnomedicinal Plants Used by the ethnic Communities of Tinsukia District of Assam, India. J. Rec. Res. Sci. and Techno, **3(9):** 31-42(2011)
- 6. Bor, N.L., Flora of Assam, (Gramineae), Government of Assam (Shillong). 5: (1940)
- Cordaux, Richard, Gunter Weiss, Nilmani Saha and Mark Stoneking, The Northeast Indian Passageway: A barrier or corridor for human migrations? *Mollecular Biology and Evolution*; 21(8): 1525–1533 (2004)
- 8. Das, A.K., Dutta, B.K. and Sharma, G.D., Medicinal plants used by different tribes of Cachar district, Assam. *Indian Journal Of Traditional Knowledge*. **7(3):** 446-454 (2008)
- 9. Deb, D.B., Flora of Tripura State. Today and tomorrow Printer and Publisher, New Delhi. 1: (1981)
- 10. Deb, D.B., Flora of Tripura State. *Today and tomorrow Printers and Publishers, New Delhi.* 2: (1983)
- 11. Hooker, J.D. The Flora of British India. London: L.Reeve & Co. Publishing Co. Pvt. Ltd. New Delhi. 1-7 (1989)
- H. Esther Gangte, Ginzamang T. Zomi and N.S. Thoudam, Ethno medicinal Plants used in Diarrhoea and Dysentery by the Zou tribe in Churchandpur District, Manipur, India. *Asian J. Exp. Biol. Sci.* 14(3): 369-376 (2013)
- 13. Jebunnessa, Uddin SB, Mahabub-Uz-Zaman M, Akter R, Ahmed NU., Antidiarrhoeal activity of ethanolic bark extract of *Mitragyna diversifolia*, *Bangladesh J Pharmacol*, **4**: 144-146 (2009)
- 14. Jan, G., Khan, M.A and Gul, F., Ethnomedicinal plants used for Diarrhoea by tribals of Meghalaya, North East India. *Pharmacogn. Rev.* **5**(10): 147-154 (2008)
- 15. Kanjilal, U.N.; Kanjilal, P.C.; Das, A. and Bor, N.L., Flora of Assam. *Govt. of Assam, (Shillong)* 1–4 (1934 1940)
- 16. Kala Chabdra, P., Ethnomedicinal botany of the Apatani in the Eastern Himalayan region of India. *http://www.ethnobiomed.com/*content/1/1/11(2005)
- 17. Lafakzuala, R., Lalramghinglova, H. and Kayang, H., Ethnobotanical usages of plants in western Mizoram. *Indian Journal of Traditional Knowledge*, **6(3)**: 486-493 (2007)
- 18. Lokendrajit N., N.Swapana, Ch.Dhananjoy Singh and C.B.Singh,2011. Herbal folk medicines used for urinary and calculi/stone cases complaints in Manipur. *NeBIO*, **2(3):** 1-5 (2011)
- 19. Mao A. A., A preliminary report on the folklore Botany of Mao Naga of Mnaipur (India), *Ethnobotany* **5:** 143-147 (1993)
- 20. Mao, A. A, Hyniewta, T. M and Sanjappa, M., Plant Wealth of Northeast India with reference to ethnobotany, *Ind. J. Tradit. Knowle.* **8**(1): 96-103 (2009)
- 21. Mukherjee J, Das R, Balasubramania K, Saha M, Pal BP. Anti-diarrhoeal evaluation of *Nelumbo nucifera* rhizome extract. *Indian J pharmacol*, **22**: 262-264 (1995)
- M. Rustam Singh, Bapukan Choudhury and T. Shyamacharan Singh, Haemoglobin E distribution in four endogamous populations of Manipur (India). *Eurasian Journal of Anthropology*, 1(2): 109–117 (2010)
- 23. Megoneitso and Rao R. R., Ethnobotanical studies in Nagaland, sixty two medicinal plants used by the Angami-a Naga, *J. Econ. Taxon. Bot.* **4**(1): 167-1721 (983)
- 24. M. M. Ahmed and P. K. Singh., Traditional Knowledge of Kidney Stones Treatment by Muslim Maiba (Herbalists) of Manipur, India. *Not Sci Biol*, **3**(2): 12-15 (2011)
- 25. Purbashree, S., Roshini, R.M. and Arun, K.H., Ethno-botany of Chothe tribe of Bishnupur District(Manipur). *Indian Journal of Traditional Knowledge*, **3**(3): 414-425 (2012)

### www.ijpab.com

- 26. Rakhi, G., Vairale, M.G., Chaudhari, P.R. and Wate, S.R., Ethnomedicinal plants used by Gond tribe of Bhandara District, Maharastra in treatment of Diarrhoea and Dysentery. *Ethnobotanical Leaflets*.**12**: 620-637 (2009)
- 27. Shanmugam, S., Annadurai, M. And Rajendra, K., Ethnomedicinal plants used to cure diarrhoea and dysentery in Pachalur Hills of Dindigul district in Tamil Nadu. *Southern Indian J.Applied pharm. Science*, **10(08)**: 94-97 (2011)
- 28. Sanjenbam Yaiphaba Meitei, Nongthombam Achoubi Devi, Benrithung Murry, Kallur Nava Saraswathy, Mohinder Pal Sachdeva, Distribution of ABO and Rh(D) blood groups among four populations in Manipur, North East India, *ANTHROPOLOGICAL NOTEBOOKS*, **16(2)**: 19–28 (2010)
- 29. Sanjem Albert, L., Rout, J. and Nath, Minaram., Traditional Tribal knowledge and Status of some Rare and Endemic medicinal Plants of north Cachar Hills District of Assam, Northeast India. J. *Ethnobotanical Leaflets*, **12:** 261-275 (2008)
- 30. Sonowal, R. and Barua, I., Ethnomedical Practices among the Tai-Khamyangs of Assam, India. J. *Ethno. Med.* **5**(1): 41-50 (2011)
- 31. Singh, H. B., Prasad, P., and RAI, L. K., Folk medicinal plants in the Sikkim Himalayas of India. *Asian Folklore Studies*, **61:** 295–310 (2002)
- 32. Sinha, S.C., Ethnobotanical Study of Manipur. Ph.D. Thesis, Manipur University(1987)
- 33. Vareishang Tangpu and Arun K. Yadav., Antidiarrhoeal activity of *Rhus javanica* ripen fruit extract in albino mice, *Fitoterapia*, **75**: 39–44 (2004)
- 34. World Health Organization, Country Health System Fact Sheet, (2006)
- 35. WHO (World Health Organisation). The treatment of diarrhoea: A manual for physicians and other senior health workers. *Geneva: World Health Organisation*(1995)
- 36. Joshi SG. Medicinal Plants, Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi (2009)